SERVICE HANDBOOK

SandBlaster[®]

Self Cleaning Commercial Gas Water Heaters with Flue Damper and Electronic Ignition

MODELS COVERED

SBD71 120 Through SBD85 500

Part Number 317926-000 Printed in the U.S.A. - 0810

SBD HANDBOOK TABLE OF CONTENTS

P	PAGE		PAGE
		Troubleshooting (continued)	
Introduction	1-2	Troubleshooting the Efflkal	28-30
		Wire Harness Test	31
Installation	3	IID Module	32
Clearances	4	Pilot Spark	33
Air Requirements	5-8	Pilot Valve	34-35
Contaminated Air	9	Main Burner Test	36
Flammable	9	Flame Rectification	37
Gas Pressure	10	IID Module	38
Gas Valve	11	Main Gas Valve	39-40
Venting	12-15		
Sequence of Operation			
Mechanical	16	Service Charts and General	
Electrical	17-18	Questions and Answers	41-42
Troubleshooting		Parts List	43-50
Transformer	19		
High Limit	20-21	Component Part Information	51
Damper (on Standby)	22	• · • • · · · ·	
PC Board	22-23	Service Check List	52-53
Thermostat	24		
Effikal Damper	25	Comments	54
Effikal Harness Test	26		

SBD SERVICE HANDBOOK INTRODUCTION

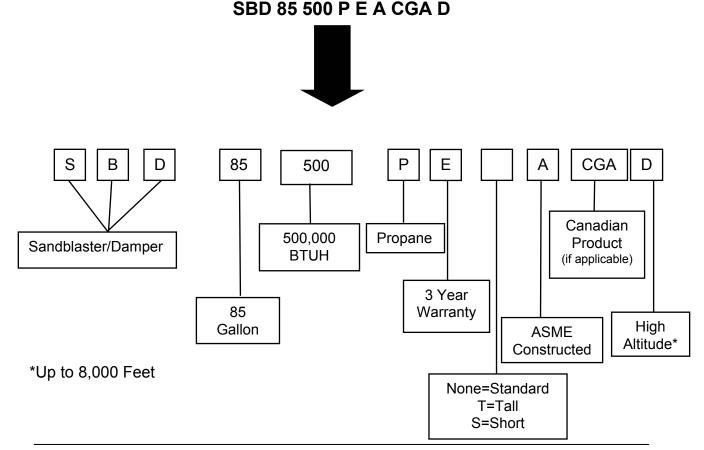
This service handbook is designed to aid in servicing and troubleshooting State SBD water heaters in the field. No duplication or reproduction of this book may be made without the express written authorization of the State Water Heater Company.

The following text and illustrations will provide you with a step by step procedure to verify proper installation, operation, and troubleshooting procedures. Additional quick reference data is included to assist you in servicing this product.

The information contained in this handbook is designed to answer common questions encountered in the operation of the SBD product line and is not meant to be all inclusive. If you are experiencing a problem not covered in this handbook, please contact the Technical Information Department at 1-800-365-0577 or your Local State Water Heater Sales Representative for further assistance. This handbook is intended for use by licensed plumbing professionals and reference should be made to the installation manual accompanying the product. This handbook contains supplemental information to the SBD installation and operation manual.

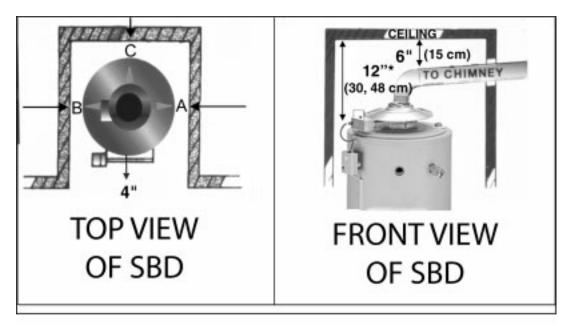
Normal Operation

26-27


Qualifications: Installation or service of this water heater requires ability equivalent to that of a licensed tradesman in the field involved. Plumbing, air supply, venting, gas supply and electrical testing skills are required.

Tools Required:

- Phillips head screwdriver
- standard screwdrivers
- a 3/8 and 7/16 inch open end wrench
- set of marked drill bits
- an electrical multimeter tester capable of measuring continuity
- gas pressure gauge or manometer
- water pressure gauge
- thermometer
- 1/2 inch socket with extension for removal of the clean out cover,
- 1 1/16 inch socket with extension for anode removal.

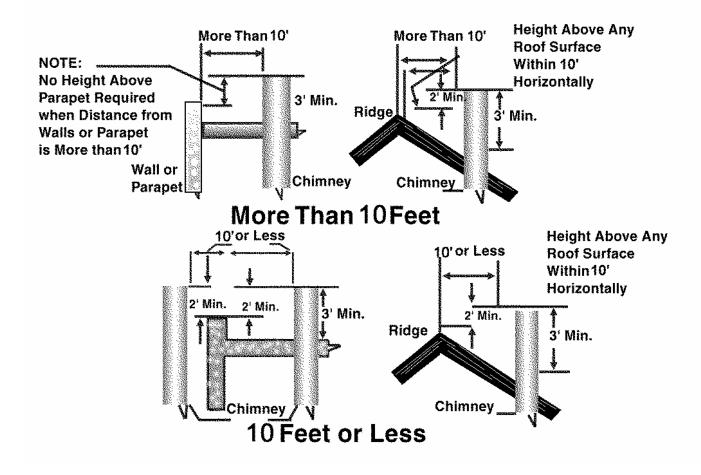

CUSTOM COMMERCIAL STORAGE TANK MODEL NUMBER BREAKDOWN

Model Breakdown

INSTALLATION

This portion of the handbook will review some often overlooked installation considerations, taking note of necessary installation requirements for the SBD 71120 through SBD 85500 model heaters. The installation manual covers most of these items in detail.

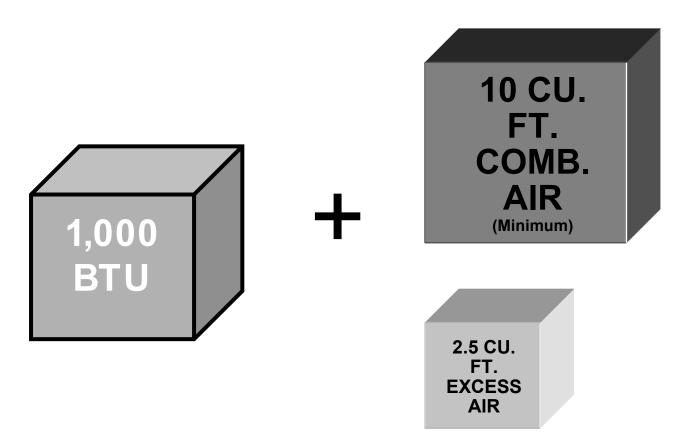
CLEARANCES FROM COMBUSTIBLES


Clearance to Combustibles Table

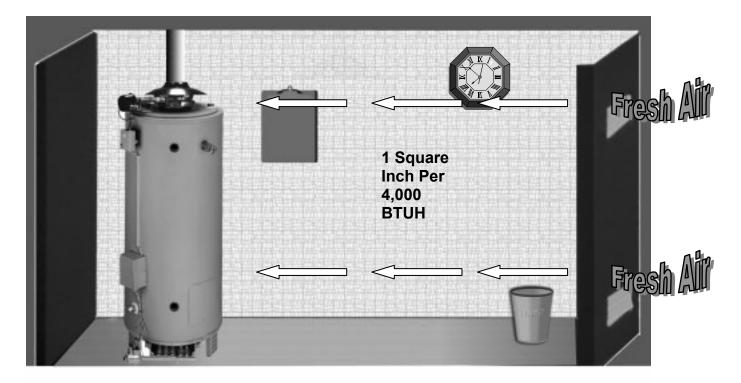
MODEL	Α	В	C
120 - 200	1" (2.54CM)	1" (2.54CM)	1" (2.54CM)
250 - 305	2" (5.08CM)	2" (5.08CM)	2" (5.08CM)
365 - 400	3" (7.75CM)	3" (7.75CM)	3" (7.75CM)
500	5" (12.7CM)	5" (12.7CM)	5" (12.7CM)

A 24 inch clearance for all serviceable parts is recommended. Clearances may vary between SBD models – See instruction manual or the label on the heater, for clearances applicable to your specific model.

*20" (50.8CM) for 500 models.


EXTERIOR CLEARANCE

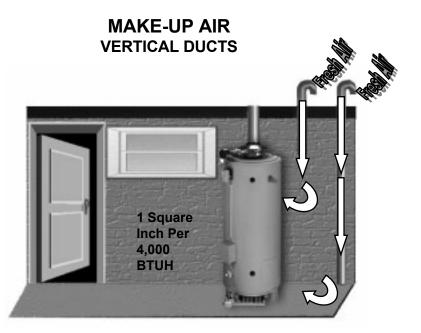
"Copyright by the American Gas Association. Used by permission of the copyright holder".


This illustrates the exterior roof clearances for SBD units with natural draft venting. The vent shall extend at least 3 feet above the highest point where it passes through a roof of a building, and at least 2 feet higher than any portion of a building within a horizontal distance of 10 feet (for vents of 12" in diameter or less). (NFPA 54 ANSI Z 223.1 SEC 7.5.2a). (Sec 7.6.2a may allow reduction to 8 feet with a "Listed vent cap").

AIR FOR COMBUSTION 10 CUBIC FEET OF AIR PER 1,000 BTU

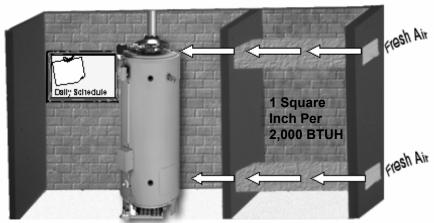
Stoichiometric or theoretical complete combustion requires 10 cubic feet of air per 1000 BTUH input of the gas input. The National Fuel Gas Code also recommends an additional 2.5 cu.ft. of "excess" air. This 12.5 cu.ft minimum supply air per 1000 BTUH input applies to natural and propane gas models.

The National Fuel Gas Code also specifies minimum make-up air opening sizes for various building installations. (Ref: NFPA 54, ANSI Z223.1, sec 5.3)



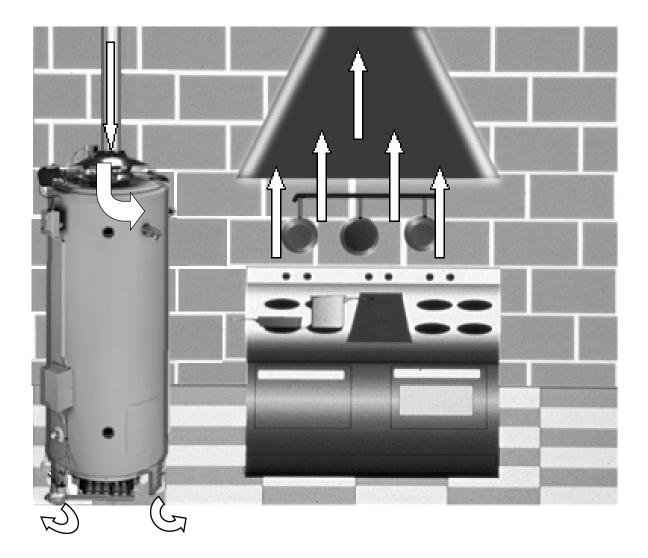
MAKE-UP AIR DIRECT COMMUNICATION

A fresh supply of make-up air for combustion can be supplied to the heater through makeup air ducts which directly communicate with the out of doors. Two openings are required - one within 12 inches of the top of the enclosure and one within twelve inches of the bottom of the enclosure. Each opening shall have a free area of not less than 1 square inch per 4000 BTUH of the total input of all appliances within the enclosure.

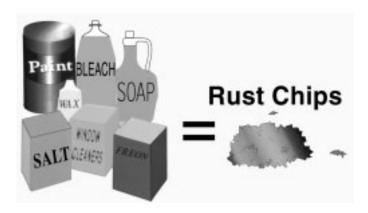

The lower opening is primarily providing combustion air. The upper opening is providing vent dilution air and acts as a relief opening for flue gases should the vent become obstructed or a downdraft condition occur. Additionally, when the heater is installed in a confined space and communicating with the outdoor air, one permanent opening, commencing within 12 in. (30 cm) of the top of the enclosure, shall be permitted where the equipment has clearances of at least 1 in. (2.5 cm) from the sides and back and 6 in. (16 cm) from the front of the appliance. The opening shall directly communicate with the outdoors and shall communicate through a vertical or horizontal duct to the outdoors or spaces (crawl or attic) that freely communicate with the outdoors, and shall have a minimum free area of:

- a. 1 sq. in. per 3000 BTU per hr (7 cm² per kW) of the total input of all equipment located in the enclosure, and
- b. Not less than the sum of the areas of all vent connectors in the confined space.

Often it is more practical to install vertical make-up air ducts to the out doors. Again, two openings are required - one within 12 inches of the top of the enclosure and one within twelve inches of the bottom of the enclosure. Each opening shall have a free area of not less than 1 square inch per 4000 BTUH of the total input of all appliances within the enclosure.


MAKE-UP AIR HORIZONTAL DUCTS

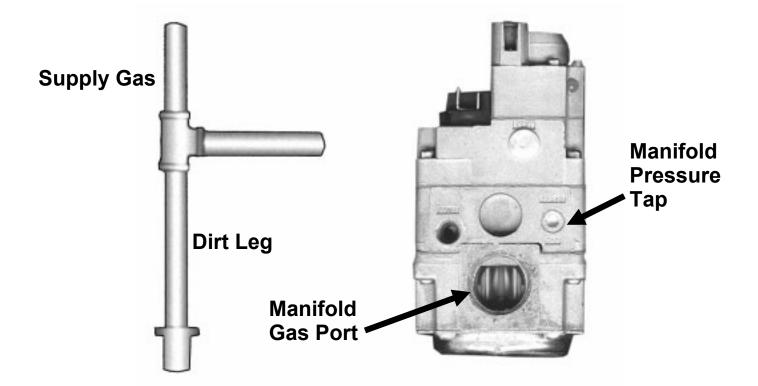
When the heater is installed in an interior room with no roof access for vertical ducts, horizontal make-up air ducts should be installed. When using horizontal ducts, two openings are required - one within 12 inches of the top of the enclosure and one within twelve inches of the bottom of the enclosure. Each opening shall have a free area of not less than 1 square inch per 2000 BTUH of the total input of all appliances within the enclosure.


Technical Training Department Ashland City, TN ©2003

INSUFFICIENT MAKE-UP AIR BACKDRAFT

Insufficient make-up air is a major cause of combustion problems. One common example is in a restaurant installation where exhaust vent equipment was not considered in sizing make-up air requirements. This may result in air being backdrafted by the restaurant exhaust equipment through the heater causing flue gas spillage, flame roll out, improper combustion, inconsistent pilot operation, and/or erratic heater shut down.

CONTAMINATED AIR


Along with adequate make-up air, the quality of the air is important. Contaminants in combustion air can lead to premature heater failure. Vapors from bleaches, soaps, waxes, salts, etc. are drawn into the combustion chamber with the make-up air and, once fired, mix with water vapor in the gases to form extremely corrosive hydrochloric or hydrofluoric acid and other corrosive byproducts.

AIR FOR COMBUSTION Flammable Items

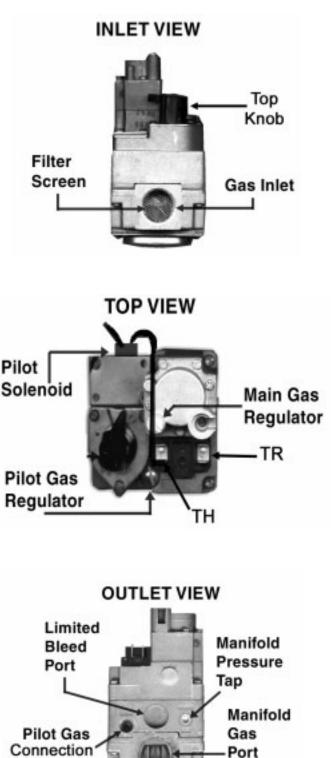
Flammable items, pressurized containers or any other potentially hazardous articles must never be placed on or adjacent to the heater. Open containers of flammable material should not be stored or used in the same room with the heater.

GAS PRESSURE REQUIREMENTS

	Natural Gas	Propane Gas
Maximum Supply Pressure	10.5" W.C.	13.8" W.C.
Minimum Supply Pressure	5.0" W.C.	11" W.C.
Manifold Pressure	4.0 " W.C.	10" W.C.

The supply gas pressure is normally measured at the dirt leg or at the gas pressure tapping on the gas supply shutoff valve. This reading must be measured with 'flowing' gas.

The manifold gas pressure is measured at the manifold pressure tap of the gas valve when the gas is flowing.


SBD GAS VALVE

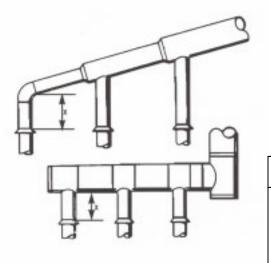
The gas valves used on all SBD water heaters are 24 volt AC combination step opening gas valves. They incorporate the pilot valve, main valve, and gas pressure regulators into one body. The inlet view of the valve features a filter screen and the top knob. The top knob is a manual on/off gas control for both the pilot and main gas valves. When the top knob is placed on the black mark, gas is supplied only to the pilot valve.

On the top view, we see the pilot solenoid and pilot and main gas regulators. The top view also displays the "TH and "TR" terminals. The pilot gas regulator is found under its cover screw. It is factory preset at 3.5" W.C. but can be adjusted from 2.5 to 5 inches water column. The main gas regulator is found under its cover screw. It is factory preset to 3.5 inches W.C. and adjusts gas pressure output from 2.5 to 5 inches water column. The two electrical terminals are marked TH and TR. The TH terminal is the common between the pilot valve solenoid coil and the main valve solenoid coil. The other wire emerging from the pilot solenoid connects to the pilot valve electrical output on the IID (terminal PV). The TR terminal connects directly to the main valve electrical output from the IID module (terminal MV).

On the outlet view of the gas valve, we see the pilot gas connection port, manifold gas connection port, a limited bleed vent port, the manifold gas and pressure tap.

See step 18 for SBD-500 gas valve illustration

Port


VENTING Atmospheric, Single, and Multiple Heaters

All SBD water heaters are classified by ANSI as category I (non-condensing, negative pressure venting) appliances. They are approved for type B vent.

For larger applications, SBD water heaters can be common vented together either in a tapered manifold or constant size manifold. (Follow National Fuel Gas Code requirements for sizing and installation.)

Combined Vents

When vents are combined, the area of the combined vent should be equal to area of the largest single vent, plus 50% of area of all others joining.

EXAMPLE: To combine two 6" vents with an 8" vent, the area of a combined vent should be one half area of two 6 inch vents (14 + 14) plus area of 8 inch vent (50) or 78 sq. inches. Referring to chart, 78 sq. inches require 10" diameter vent.

	Area in Square		Area in Square
Vent Size	Inches	Vent Size	Inches
5"	20	10"	79
6"	28	12"	113
7"	38	14"	154
8"	50	16"	201
9"	64	18"	254

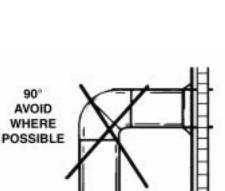
Nine Rules for Good Vents

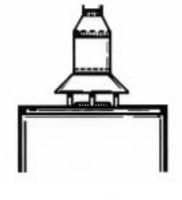
- 1. The vent pipe should ALWAYS be the same size as the outlet of the draft diverter or factory supplied vent reducer.
 - Model SBD 120 are supplied with a 6" to 5" reducer.
 - Models SBD 250, 251 and 275 are supplied with a 8" to 6" reducer.

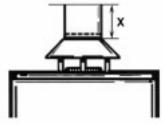
45°

YES!

SBD TANK TYPE HEATERS SERVICE HANDBOOK

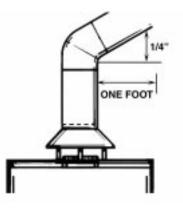

Nine Rules for Good Vents (continued)

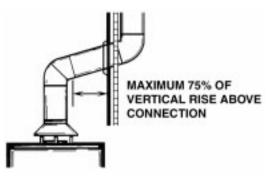

2. The diameter of a vent pipe should NEVER be reduced, no matter what the circumstances.


3. In some cases it may be necessary to run a vent larger than the draft diverter outlet.

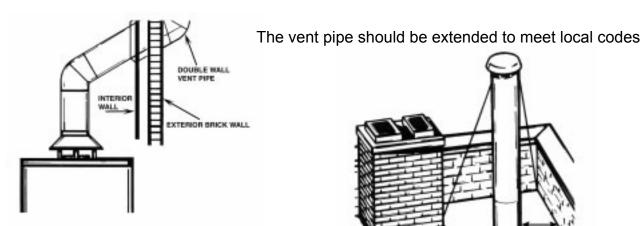
- 4. Take the maximum vertical rise possible immediately above the draft diverter.

5.

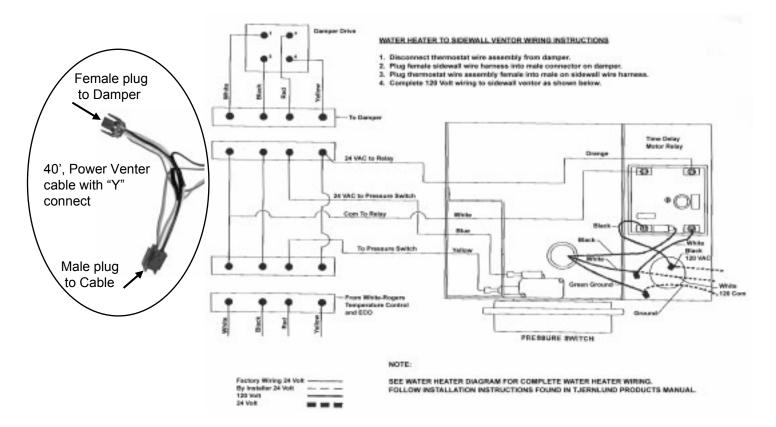




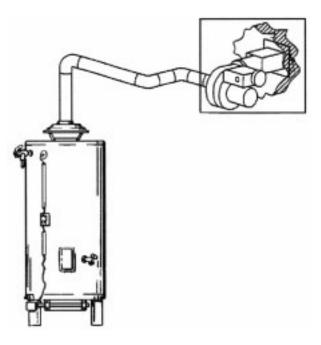
Nine Rules for Good Vents (continued)


6. Horizontal pipe should be sloped upward at a minimum of 1/4" per foot.

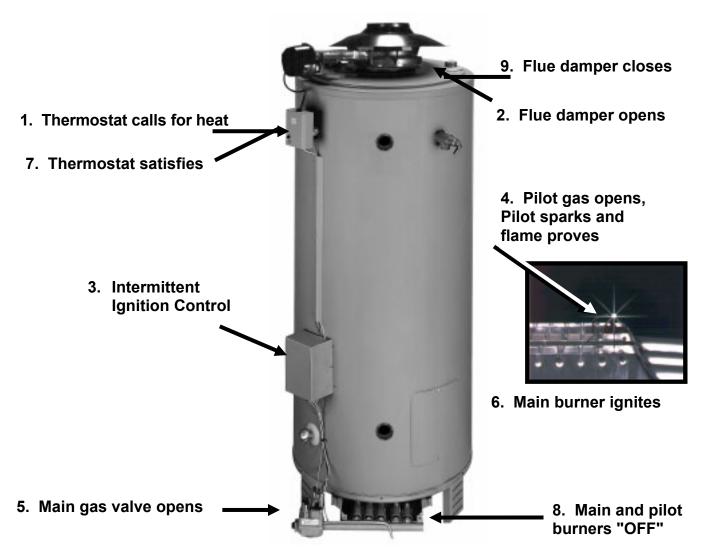
7. Horizontal elements should be limited to 75% of the vertical rise of the vent above the connection.



8. Flue gases must be kept hot for proper venting.

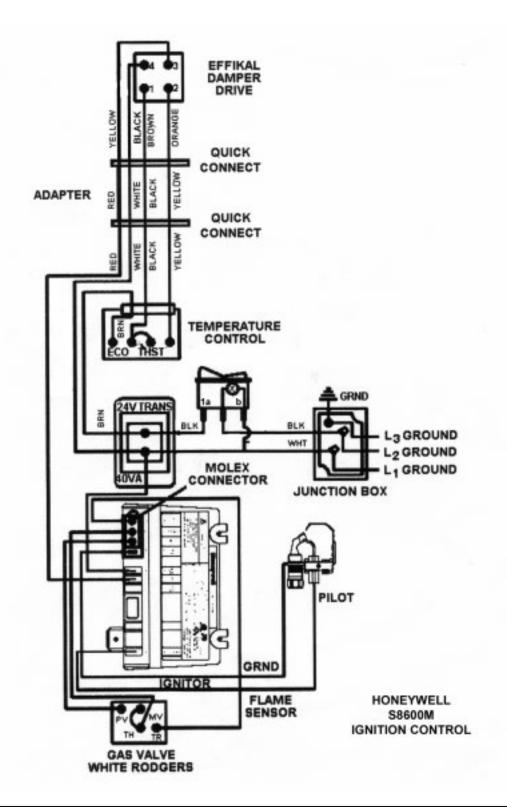


9. Obstructions can cause down drafts.

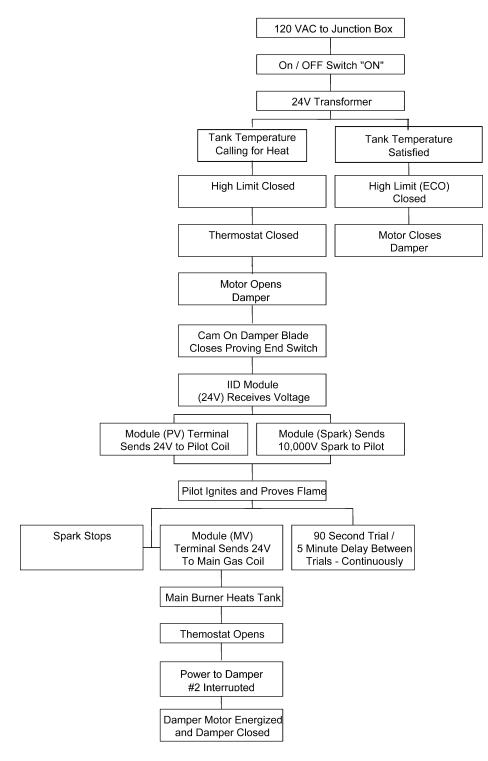

POWER VENT KITS FOR SIDEWALL VENTING

SBD water heaters can be used with power vent kits for sidewall venting. State offers power vent kits for use on installations with a maximum of 100 equivalent feet of vent piping. The power vent kits also use type B vent materials. When power venting, specific exterior clearances must be maintained, as outlined in the National Fuel Gas Code. (NFPA 54, ANSI A223.1, sec 7.8)

SBD SEQUENCE OF OPERATION



SEQUENCE OF OPERATION


To understand SBD tank type water heaters, an examination of their sequence of operation is necessary.

When the thermostat calls for heat, the relay in the draft hood assembly activates the flue damper motor. The damper opens and power flows to the IID (Intermittent Ignition Device). This activates the IID module to open the pilot valve and begin sparking at the pilot burner assembly. Once the pilot flame is established and confirmed back to the IID, the sparking is stopped and the main gas valve is opened, allowing gas flow to the main burner. When the thermostat satisfies, main and pilot gas is shut off. Damper is returned to closed position.

SBD ELECTRICAL SEQUENCE 100 – 109 Series

SBD ELECTRICAL SEQUENCE OF OPERATION 115/60/12A

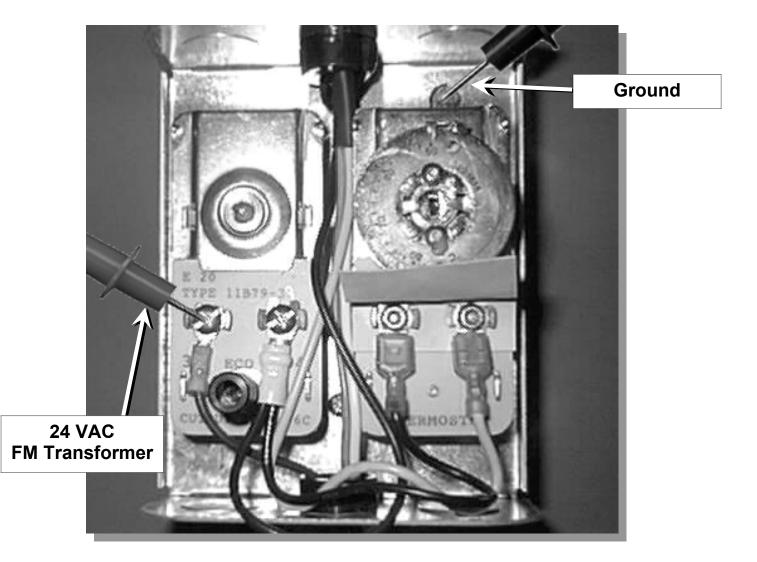

TROUBLESHOOTING SBD WATER HEATERS

To troubleshoot a SBD water heater check that:

- 120 VAC is supplied to the heater
- the tank is full of water
- gas is supplied to the unit

STEP 1

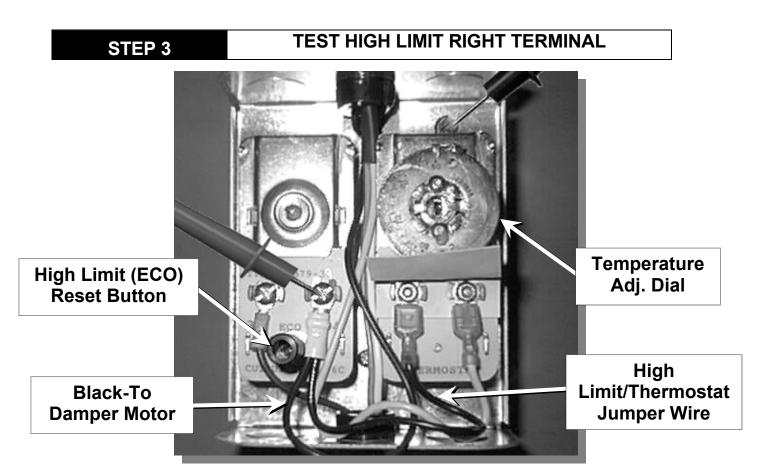
TEST THE TRANSFORMER



STEP 1 - TO TEST THE TRANSFORMER - Using a multimeter, test for 24 VAC between the secondary transformer terminals.

IF	THEN
The meter does not read 24 VAC:	 Check that the 120 VAC is supplied from the On/Off Switch – if not, replace switch. Check that the 120 VAC is supplied from transformer.
The meter reads 24 VAC:	Go to step 2.

STEP 2


HIGH LIMIT, LEFT TERMINAL TEST

STEP 2. HIGH LIMIT, LEFT TERMINAL TEST. Test for 24 VAC between the left high limit terminal and ground.

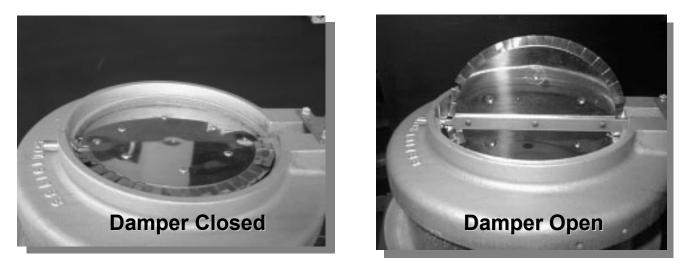
IF	THEN
The meter does not read 24 VAC:	 Check wiring between transformer and high limit.
The meter reads 24 VAC:	Go to Step 3.

Note: The high limit (Energy Cut Off) opens if the tank water temperature exceeds 205 degrees. The control is resettable (manually) when the tank water temperature drops below 185 degrees.

STEP 3. TO TEST HIGH LIMIT RIGHT TERMINAL. Ensure that the jumper wire between the high limit and thermostat is connected, and the damper motor power line is connected. Test for 24 VAC between the high limit right terminal and ground.

IF	THEN	
The meter does not read 24 VAC:	•	Push the reset button and redo the test (storage
		water temperature below 185 degrees).
The meter reads 24 VAC:	•	Go to step 4.

After Push in Reset - 24 VAC is now present


Reasons For Resetting			
Condition	Cause	Solution	
High limit open	Never set on initial installation	Push high limit button	
Excessive water temperature	Faulty thermostat	Replace dual control	
Heater shut down before reaching thermostat setting	Faulty high limit	Replace dual control	

Note: The right terminal of the high limit has a jumper wire connected to the left terminal of the thermostat. There is also a black wire connecting to the damper motor assembly. This black wire supplies power to the motor to close the damper during periods of standby.

Г

STEP 4

INSPECT THE DAMPER

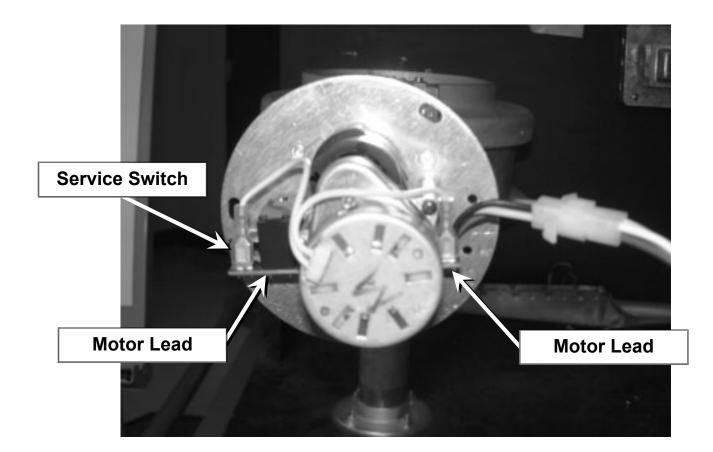

STEP 4. INSPECT THE DAMPER. Lower the thermostat setting so the unit will not be calling for heat, then inspect the damper.

IF	THEN
If the damper is open:	Go to step 5.
If the damper is closed:	Go to step 7.

Note: If the water temperature in the tank is below 120 degrees F, temporarily disconnect the jumper wire between the high limit and thermostat to simulate a satisfied thermostat.

STEP 5

CHECK THE PC BOARD

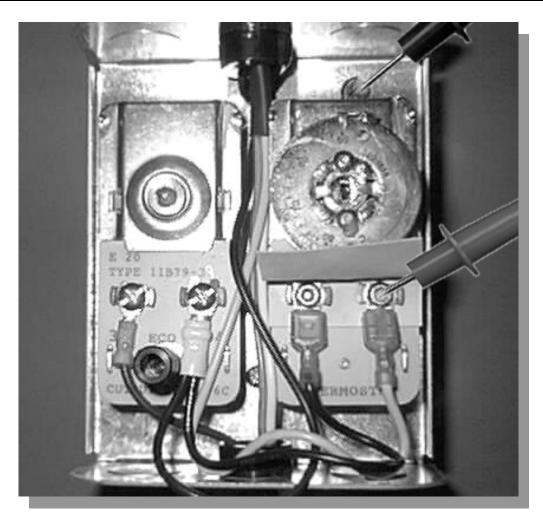


STEP 5. CHECK THE PC BOARD. Test for 24 VAC between the black PC board wire connection and ground.

IF	THEN
24 VAC is not present:	Check the black wire connections
	between PC Board and high limit.
24 VAC is present:	Go to step 6.

Technical Training Department Ashland City, TN ©2003

STEP 6 PC BOARD MOTOR TEST


STEP 6. PC BOARD/MOTOR TEST. Check for 24 VAC between the two motor lead terminals of the PC board. Disconnect the wires for this test.

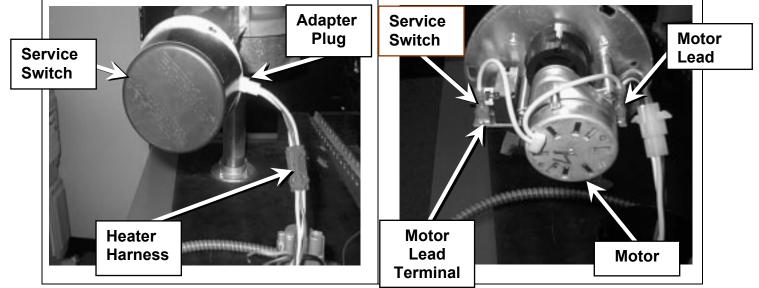
IF	THEN
24 VAC is not present:	 Replace the Damper Drive and go to step 7. The board and relay are one piece. Regardless of which part is defective, both parts should be changed.
Voltage is present:	 This verifies that the motor is receiving power but not closing the damper. Replace the Damper Drive and go to step 7.

Note: The service switch may be used to bypass the damper, while waiting for a replacement part. **WARNING -** In the event of damper motor failure, verify that the damper is in the "open" position before utilizing the service switch

STEP 7

THERMOSTAT TEST

STEP 7. THERMOSTAT TEST. Set the thermostat to call for heat. Using your multimeter, test for 24 VAC between right terminal and ground.

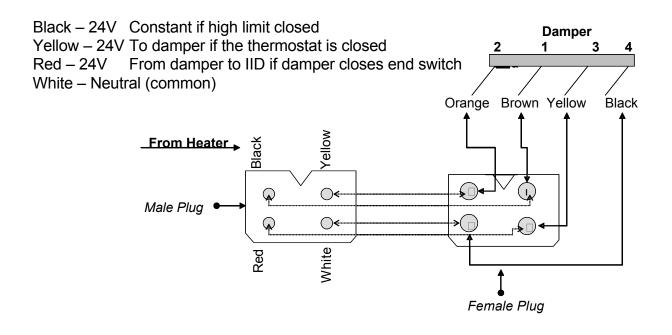

IF	THEN	
The meter does not read 24 VAC and the jumper wire	Replace the thermostat	
between the high limit and the thermostat is in place:		
The meter reads 24 VAC:	Go to step 8.	

Note: If the high limit to thermostat jumper wire was disconnected earlier to simulate a satisfied thermostat, reconnect the jumper to the terminals.

Note: A yellow wire from this thermostat terminal connects to the damper PC board.

EFFIKAL DAMPER

The wiring colors from the damper PC Board are different colors than the wires on the heater wiring harness. The male/female plugs to connect the damper board to the heater harness join in only one way.



Effikal Control Cover (Photo of kit mounting)

Effikal Style

Adapter not necessary on production 110,111 Series

The heater harness wires still serve the same function:


HARNESS CHART

Heater Harness	Function	Damper Harness
Black	24V Hot	1-Brown
Yellow	24V from Thermostat	2-Orange
Red	24V from damper	3-Yellow
White	24V common	4-Black

NORMAL OPERATION

Condition:

- Heater on standby
- Damper closed
- High Limit closed

STEP 8

TEST FOR 24VAC BETWEEN BLACK (COMMON) AND BROWN

STEP 8. TEST FOR 24VAC BETWEEN BLACK (COMMON) AND BROWN

IF	THEN
24VAC is present	Continue to Step 8A.
24VAC is not present	See Troubleshooting Step 9A

NORMAL OPERATION (continued)

Condition:

• Thermostat closed, damper in process of opening

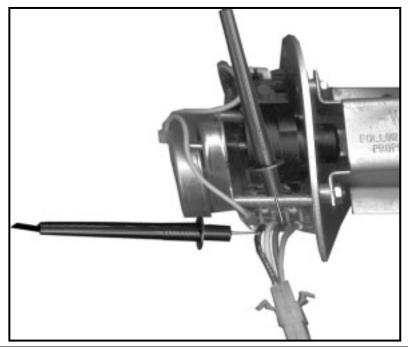
STEP 8A TEST FOR 24VAC BETWEEN BLACK AND ORANGE

IF	THEN
24VAC is present	Continue to Step 8B.
24VAC is not present	See Troubleshooting Step 9B.

Condition:

• Thermostat closed, damper fully open

STEP 8B TEST FOR 24VAC BETWEEN BLACK AND YELLOW

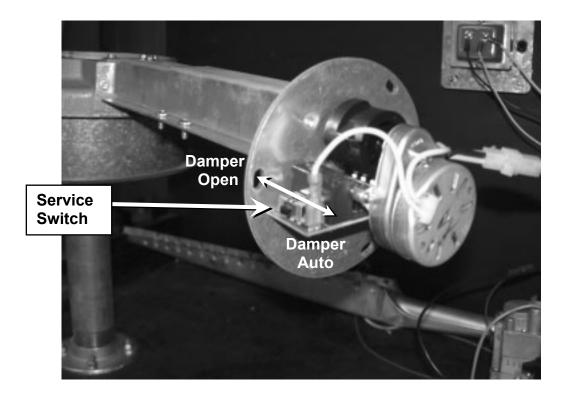

IF	THEN
24VAC is present	Continue to Step 10A.
24VAC is not present	See Troubleshooting Step 9B.

TROUBLESHOOTING THE EFFIKAL DAMPER

Condition:

Thermostat closed, damper closed

Wires are from left to right: Black • Yellow • Brown • Orange


TEST BETWEEN BLACK (COMMON) AND BROWNSTEP 9AON THE DAMPER BOARD

IF	THEN
24VAC is present	This is correct
24VAC is not present	See Steps 1 thru 4
	Check the harness plugs connecting heater
	and damper for looseness or damage.

TROUBLESHOOTING THE EFFIKAL DAMPER (continued)

Condition:

Thermostat closed, damper open.

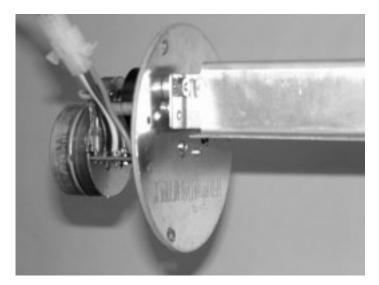
	A1 IS CORRECT, CHECK SERVICE SWITCH
STEP 9B	POSITION

IF	THEN
Switch is incorrect position	Replace damper board/motor assembly.
Switch is not in correct position	 Adjust switch Cycle thermostat to verify that damper operation is correct.

TROUBLESHOOTING THE EFFIKAL DAMPER (continued)

Condition:

Thermostat closed, damper is open fully


STEP 10A TEST FOR 24VAC BETWEEN BLACK AND YELLOW

IF	THEN
24VAC is present	This is correct – continue to Step 11
24VAC is not present	See Step 9B.
	Check the harness plug connecting.
	 Check that cam on shaft rotates with shaft.
	Replace the damper board.
	 Ensure that cam is secure against end switch.

Condition:

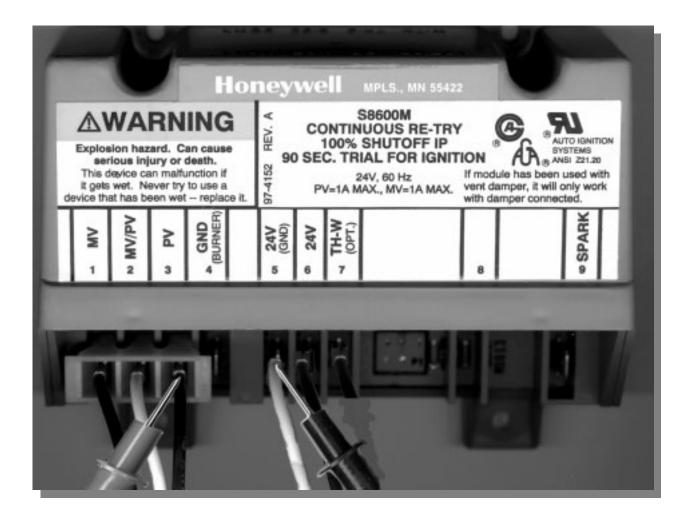
Damper rotates continuously

STEP 10B ADJUST END SWITCH TO CAM CONTACT

IF	THEN
Damper stops in proper position	24 VAC should be open on a call for heat
	and close during standby/
Damper does not stop in proper position	Replace damper assembly.

STEP 11

WIRE HARNESS TEST

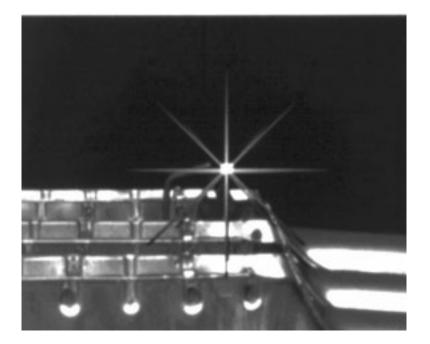

STEP 11. WIRE HARNESS TEST. Test for 24 VAC between terminal 24V on the IID module, and 24V GND.

IF	THEN
24 VAC is not present:	Check the wiring harness.
24 VAC is present:	Go to step 12.

Note: This test may be easier to conduct by removing the red wire from the IID terminal. Test for 24 VAC between the red wire and ground. Reconnect the red wire to the 24V terminal after the test.

STEP 12

IID MODULE TEST



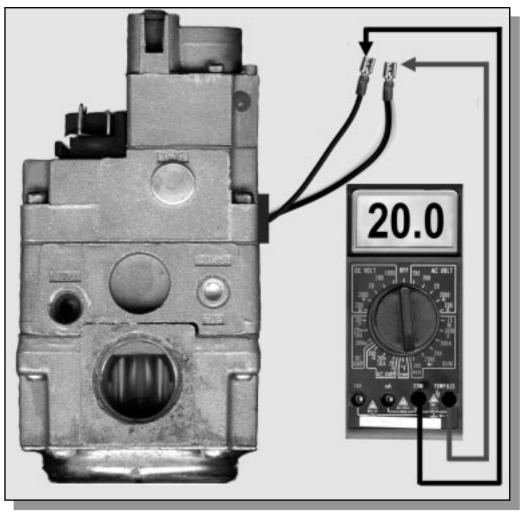
STEP 12. IID MODULE TEST (Power to the Pilot Valve). Using a multimeter, test for 24 VAC between terminal PV and 24V (GND) on the IID during the 90 second trial for ignition.

IF	THEN
The meter does not read 24 VAC and the	Replace the module.
IID module is not between ignition trials:	
The meter does read 24 VAC:	Go to step 13

STEP 13

PILOT SPARK TEST

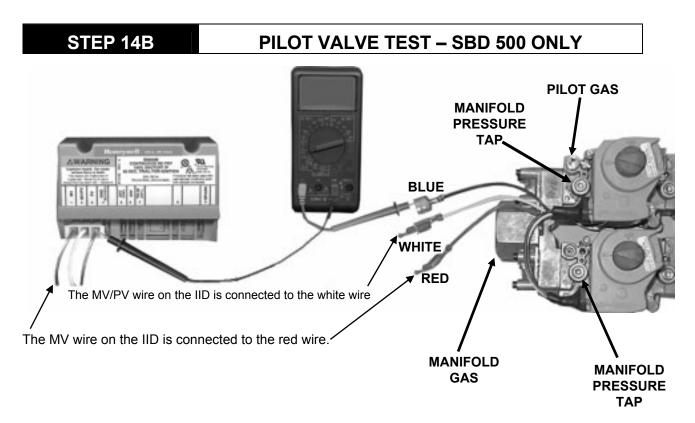
STEP 13. PILOT SPARK TEST. Visually check for spark at the pilot assembly. Note: The pilot burner mounts on the left side of the main burner.


IF	THEN
The igniter is not sparking:	Check for:
	A 7/64" spark gap
	Spark cable continuity
	Ground cable continuity
Sparking is present:	Go to step 14.

Power To Module May Be Interrupted To Reset .

Trial for Ignition							
	90 sec.	5 min.	90 sec.	5 min.	90 sec.		
Call for heat	Sparking	No Sparking	Sparking	No Sparking	Sparking	Continuous Trial Sequence	

STEP 14A


PILOT VALVE - OHM TEST

SBD 120 - 400 GAS VALVE

STEP 14A. PILOT VALVE - OHM TEST. If pilot assembly is sparking but no pilot flame is established, disconnect the pilot valve solenoid leads. Using a multimeter, (set to read ohms) test for 20* ohms resistance +/- 5 through the solenoid coil.

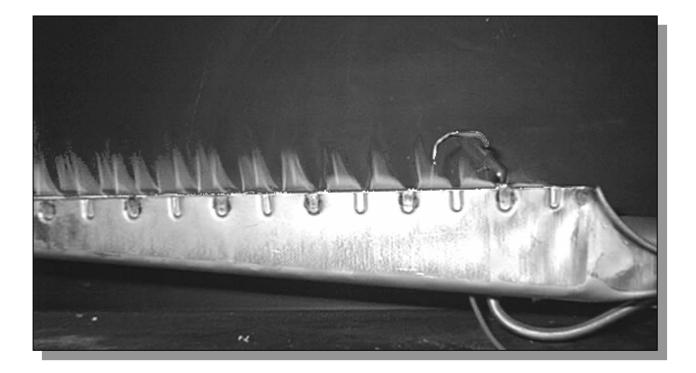
IF	THEN
The meter dose not read 20 ohms plus or minus 5:	Replace gas valve
The meter does read 20 ohms plus or minus 5:	 Gas valve should work. Also check that pilot gas is present and pilot tube or orifice are not blocked

STEP 14B. PILOT VALVE TEST - SBD 500 ONLY. Testing the two coils of the Honeywell VR8404P 5004 gas valve used on the model SBD 500 only. Because of built in diodes, it is difficult to test for ohms resistance through these coils. The following is a DC amperage check of the main and pilot coils. Condition:

Tank calls for heat .

- PV terminal of module has 24 Vac •
- No Pilot flame

Test Procedure:

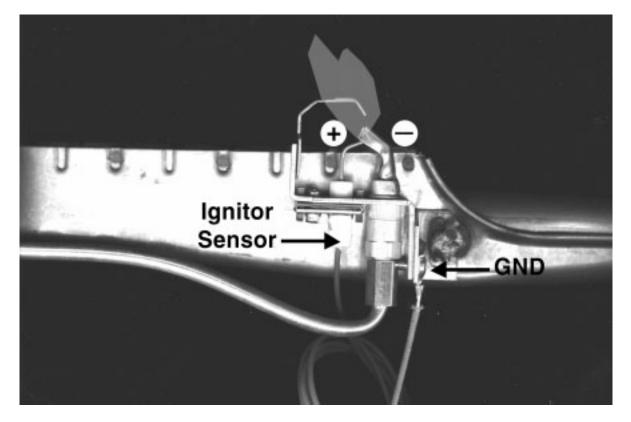

- Turn off power to heater
- Meter set to test for DC amperage (on meters, the black wire is in the "com" port, the red wire is in the "10A" port, the dial is set to 20M/10A in the DC AMP test area).
- Blue "PV" wire is disconnected from the ignition PV terminal.
- Install meter in series between gas valve and ignition module 10A wire to blue gas valve lead, common wire to PV module terminal.
- Turn power on to heater, after module receives 24V •

IF	THEN				
.75 to .85 DCA is not present:	Replace the gas valve				
.75 to .85 DCA is present	Pilot should work if gas (not air) is present to pilot				
Power off, reattach hue gas valve wire to PV terminal of module					

Test DC Amperage through Pilot coil of gas valve

Power off, reattach blue gas valve wire to PV terminal of module.

STEP 15 MAIN BURNER TEST



STEP 15. MAIN BURNER TEST. Visually check for main burner.

IF	THEN
The main burner ignites:	Sequence is complete
The main burner does not ignite	Go to step 16

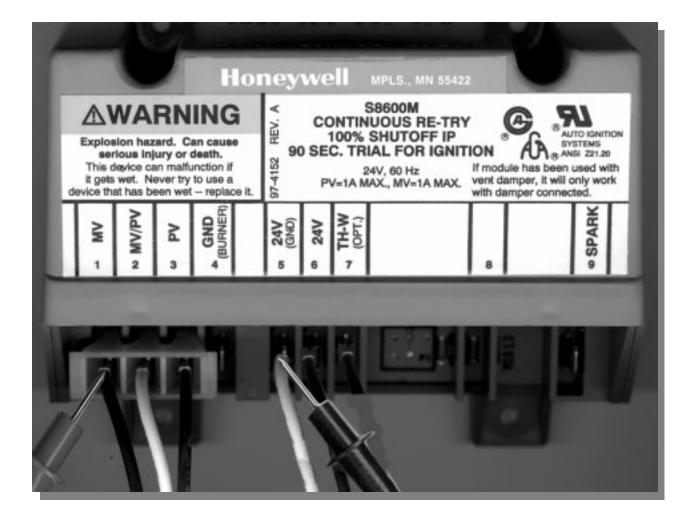
STEP 16

FLAME RECTIFICATION

STEP 16. FLAME RECTIFICATION

Note: Flame rectification means that an alternating current (AC) signal is changed to a direct current (DC) signal. The pilot flame is the 'switch' which connects the pilot hood to the igniter and ground. If the pilot hood and igniter sensor had the same surface area, the flame 'switch' would conduct an AC signal. Because the pilot surface is greater than the igniter surface, the signal becomes a DC current that the module can interpret. The pilot hood must be properly grounded and the pilot flame must remain in contact with both surfaces for the flame proving signal to remain constant.

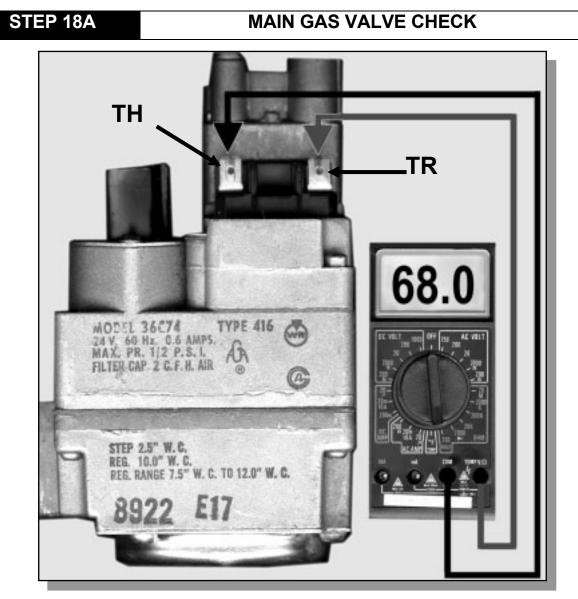
If the signal is broken for just 8 tenths of a second, the heater will cycle off.


Sparking at the pilot will continue if an insufficient signal is received by the module.

Sparking at the pilot will stop almost immediately after the ignition module senses the pilot flame.

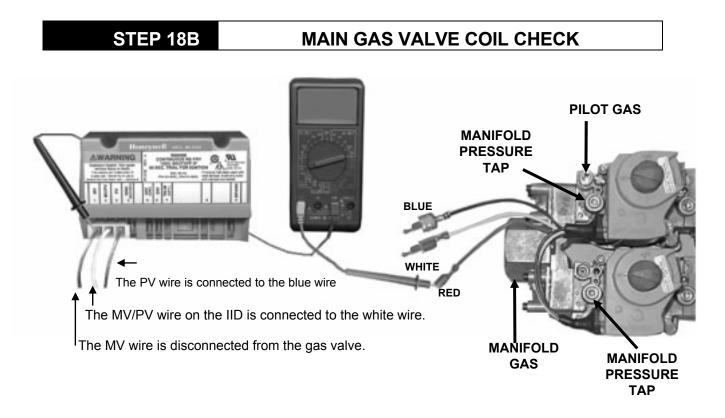
IF	THEN
Sparking continues after pilot is established:	 Check wire connections Check flame contact between hood and lighter
	Clean pilot burner surfacesReplace pilot assembly
Sparking stops:	Go to step 17.

STEP 17


IID MODULE TEST

Pilot is lit - Sparking has stopped.

STEP 17. IID MODULE TEST (Power to the Main Valve). Using a multimeter, test for 24 VAC between terminal MV on the IID and 24V (GND).


IF	THEN
24 VAC is not present:	 Replace the IID module. Conduct Step 18 before applying power to replacement module.
24 VAC is present:	Go to step 18.

SBD 120 – 400 GAS VALVE

STEP 18A. MAIN GAS VALVE CHECK. Disconnect wires from gas valve TH and TR terminals. Using a multimeter, test for 68 ohms plus or minus 5 between TH and TR on the main valve coil.

IF THEN	
The meter reads 'O' or infinity	Replace the gas valve
The meter reads 68* ohms plus or minus 5	The main burner will ignite

STEP 18B. MAIN GAS VALVE COIL CHECK – SBD 500 ONLY

Condition:

- Pilot lights
- Sparking stops
- No main burner ignition

Test Procedure:

- Power off
- · Disconnect red, main valve wire from module MV terminal
- Meter set to test for DC amperage
- 10A wire to red gas valve wire, COM wire to MV terminal of ignition module
- Turn power on to heater
- After pilot lights and sparking stops

IF:	THEN:
.25 to .35 DC Amps is not present	Replace the gas valve
.25 to .35DCA is present	Main burner gas should ignite.

Be certain to correct you meter wire connections and setting before performing further tests.

GENERAL SERVICE CHART

GENERAL SERVICE CHART			
CONDITION	CAUSE	SOLUTION	
DAMPER OPENS NO POWER TO IID MODULE	. DAMPER NOT FULLY OPEN	.EFFIKAL – REPLACE DAMPER CONTROL ASSEMBLY . REPLACE DAMPER	
	. DEFECTIVE PROTECTOR SWITCH	. REPLACE PC BOARD	
PILOT LIGHTS, SPARKS CONTINUOUSLY	PILOT FLAME NOT PROVING	SEE FLAME RECTIFICATION - STEP 16	
		INTERRUPT 120 VAC POWER	
HEATER WILL NOT IGNITE	NOT PROVING PILOT FLAME EXISTANCE	. CHECK GROUND WIRE ATTACHMENT	
		. CLEAN OR REPLACE PILOT ASSEMBLY	
	PILOT GAS NOT COMPLETELY INTERRUPTED AT END OF HEATING CYCLE	. CHECK SUPPLY GAS PRESSURE . REPLACE GAS VALVE	
WEEPING TEMPERATURE AND PRESSURE RELIEF VALVE	. THERMAL EXPANSION	ADD THERMAL EXPANSION TANK	
	. FAULTY VALVE	REPLACE RELIEF VALVE	
LARGE VOLUME WATER	. EXCESSIVE WATER	. CHECK WIRING	
RELIEF FROM T&P VALVE	TEMPERATURE	. REPLACE DUAL CONTROLLER	
	. FAULTY RELIEF VALVE	REPLACE RELIEF VALVE	
PREMATURE TANK LEAKAGE	CONDENSATION	. INCREASE STORED WATER TEMPERATURE AND CONFIRM PROPERLY SIZED APPLICATION	
		PROPERLY SIZED APPLICATION	
	CONTAMINATED AIR	. REMOVE CONTAMINANTS. . SUPPLY CLEAN COMBUSTION AIR.	
	WATER HAMMER	A ADD WATER HAMMER ARRESTOR. . REDUCE WATER PRESSURE. . REMOVE UNNECESSARY CHECK VALVES.	
	THERMAL EXPANSION	ADD THERMAL EXPANSION TANK.	
	DEPLETED ANODES	SCHEDULE ANODE CHECKS - REPLACE AS NEEDED.	
DAMPER WILL NOT OPEN	BINDING SHAFT	SUPPORT VENTING	
	DAMPER MOTOR	EFFIKAL-REPLACE DAMPER CONTROL ASSEMBLY	
NO SPARK AT PILOT - DAMPER FULLY OPEN	DAMPER ASSEMBLY	SEE STEP 10A Services Switch may bypass problem until replacement part is received. (EFFIKAL – REPLACE DAMPER CONTROL ASSEMBLY	
	IID MODULE	REPLACE IID STEP 12	
	SPARK CABLE	REPLACE CABLE STEP 13	

GENERAL QUESTIONS AND ANSWERS

What is unique about the Canadian – SBC-CGA – models vs. U.S. SBD models?

A. The Canadian models have different dimensions to meet Canadian code requirements.

Q: How much electrical power is required for a SBD water heater?

Q.

A: The SBD models draw approximately .7 Amps at 120VAC.

Q: The units require "leg kits" to meet National Sanitation Foundation standards.

Q: When should SBDs be delimed? NOTE: The "Hydrocannon" should eliminate or greatly reduce the lime build up rate from the water heater.

Many variables affect the liming up process including:

water temperature - The amount of lime precipitation during the same period of time will be nearly 2 times greater if water is stored at 140 degrees F than at 120 degrees F. A 180 degree setting will precipitate lime about seven times as fast as a 140 degree F setting.

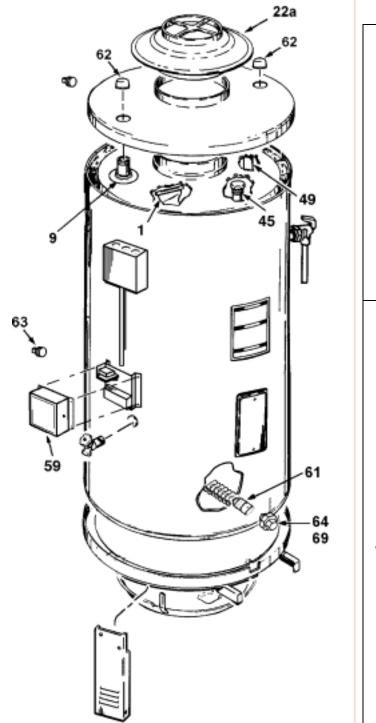
volume of water - The more gallons flowing through the SBD, the more exposure to accumulation.

hardness – The harder the water the higher the possibility of lime build up. 1 to 3.5 grains per gallon is "soft", 3.5 to 7 grains per gallon is "moderate", 7 to 10.5 grains per gallon is "hard" and 10.5 + grains per gallon is "very hard". (An aspirin is about 5 grains. One grain is equal to 17.1 parts per million.)

A: Deliming should be done when a slight rumbling or popping sound is detected when the main burners are on.

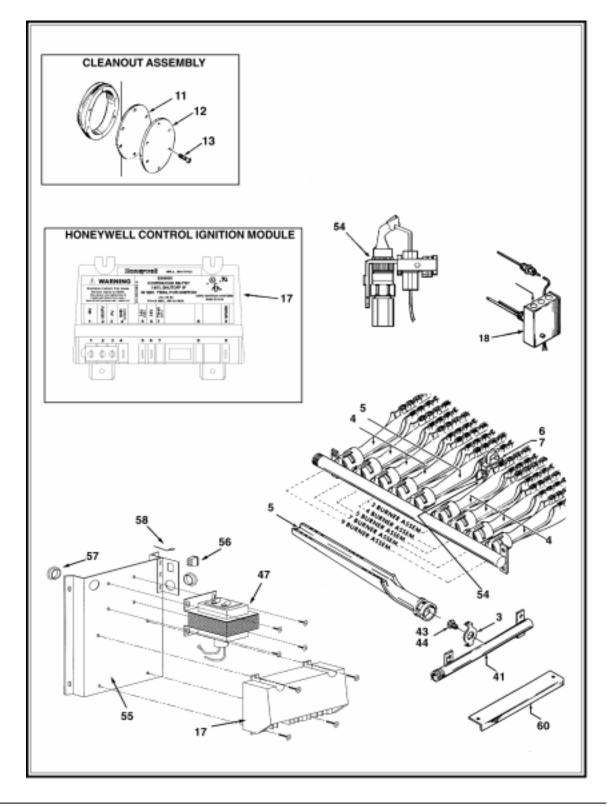
Q: What effect will lime build-up have on the SBD water heater?

- A: One eighth inch of scale build-up may reduce efficiency as much as 22%; a 1/4 inch buildup, as much as 38%.
- A: Less efficient heat transfer means more bottom head expansion/contraction stress and premature leakage.
- A: Heavy build-up on the bottom head and bottom portion of the flue pipes leads to more heat transfer at the top of the flues. This can lead to stacking or erratic thermostat operation.
- A: The "Hydrocannon" greatly reduces the possibility of lime build-up.


Q: Anode rods provide additional protection against corrosion. When should these be replaced?

A: When large gouges or pits appear in the anodes, replace them. It is recommended that these be inspected every 6 months.

SBD MODELS 120 THRU 500A SERIES 110-111


PARTIAL REPLACEMENT PARTS LIST MODELS SBD 120 THRU 500A: STANDARD AND ASME (A) SERIES 110/111

EFFIKAL DAMPER DRIVE ASSEMBLY

22b **GAS VALVES HONEYWELL VALVE SBD 500A** WHITE RODGERS VALVE SBC 120 - 400A 51 52

SBD MODELS 120 THRU 500A (continued) SERIES 110-111

Technical Training Department Ashland City, TN ©2003

SBD MODELS 120 THRU 500A (continued) SERIES 110-111

ITEM PARTS

1.....Flue Baffle 3.....Main Burner Orifice Bracket..... 4.....Main Burner..... 5......Main Burner w/Pilot Bracket...... 6.....Pilot Burner, Natural 7.....Pilot Burner. LP CLEANOUT ASSEMBLY 11...Gasket 12...Pressure Plate 13...Screws, Self Tapping..... 17......Control, Ignition Module..... 18......Control, Dual w/ECO 19......Cover, Cleanout..... 22a Drafthood 22b Damper Drive Assembly 22cHarness Adapter LABELS 41......Manifold..... 42 Instruction Manual 43Main Burner Orifice, Natural..... 44 Main Burner Orifice, LP 45......Anode Rod..... 47 Transformer 48.....Pilot Tubing..... 49......Inlet Tube..... 51......Gas Valve Natural..... 52......Gas Valve LP..... 55......Switch Panel/Mounting Plate 56 Off/On Switch 57Bushing..... 58Jumper Wire 59......Control Box Panel..... 60......Cover - Burner 61......Hydro-Cannon 62......(1 1/2") galvanized pipe cap 63.....(1 1/2") galvanized pipe plug..... 64(1 1/2") galvanized pipe union....

SBD MODELS 120 THRU 500A (continued) SERIES 110-111

ITEM PARTS

1.....Flue Baffle 3......Main Burner Orifice Bracket...... 4.....Main Burner.... 5......Main Burner w/Pilot Bracket..... 6.....Pilot Burner, Natural 7.....Pilot Burner, LP CLEANOUT ASSEMBLY 11...Gasket..... 12...Pressure Plate 13...Screws, Self Tapping..... 17Control, Ignition Module 18Control, Dual w/ECO 19......Cover, Cleanout..... 22a Drafthood 22b Damper Drive Assembly 22cHarness Adapter LABELS 41......Manifold..... 42 Instruction Manual 43......Main Burner Orifice, Natural 44Main Burner Orifice, LP 45.....Anode Rod..... 47 Transformer 48......Pilot Tubing..... 49.....Inlet Tube..... 51......Gas Valve Natural..... 52......Gas Valve LP..... 55Switch Panel/Mounting Plate 56 Off/On Switch 57.....Bushing..... 58.....Jumper Wire 59......Control Box Panel..... 60......Cover - Burner 61......Hydro-Cannon 62......(1 1/2") galvanized pipe cap 63......(1 1/2") galvanized pipe plug...... 64(1 1/2") galvanized pipe union.....

SBD MODELS 120 THRU 500A (continued) SERIES 110-111

ITEM PARTS DESCRIPTION

1	Flue Baffle
	Main Burner Orifice Bracket
	098044(9)
4	Main Burner
5	Main Burner w/Pilot Bracket
	Pilot Burner, Natural
4	
	Pilot Burner, LP
<u>3</u>	
	OUT ASSEMBLY
	Gasket
	Pressure Plate
	Screws, Self Tapping
	Control, Ignition Module
	Control, Dual w/ECO
	Cover, Cleanout
	Drafthood
	Damper Drive Assembly
	Harness Adapter
LABELS	
	Manifold
	Instruction Manual
	Main Burner Orifice, NAT
28	
	Main Burner Orifice, LP
44	
	Anode Rod
42	
	Transformer
	Pilot Tubing
	Inlet Tube
51	Gas Valve Natural
<u>0</u>	
52	Gas Valve LP
<u>1</u>	
	Switch Panel/Mounting Plate
	Off/On Switch
57	Bushing
58	Jumper Wire
59	Control Box Panel
60	Cover - Burner
	Hydro-Cannon
	(1 1/2") galvanized pipe cap
	(1 1/2") galvanized pipe plug
3	
64	(1 1/2") galvanized pipe union
	, , , , , , , , , , , , , , , , , , ,

SBD MODELS 120 THRU 500A (continued) SERIES 110-111

ITEM PARTS DESCRIPTION

1..... Flue Baffle..... 3...... Main Burner Orifice Bracket 4..... Main Burner 5..... Main Burner w/Pilot Bracket..... 6..... Pilot Burner, Natural..... 7..... Pilot Burner, LP..... CLEANOUT ASSEMBLY 11..... Gasket..... 12 Pressure Plate 13..... Screws, Self Tapping 17 Control, Ignition Module 18 Control, Dual w/ECO 19..... Cover, Cleanout 22a Drafthood 22b Damper Drive Assembly 22c Harness Adapter LABELS 41 Manifold 42 Instruction Manual 43..... Main Burner Orifice. Natural..... 44 Main Burner Orifice, LP..... 45 Anode Rod 47 Transformer 48 Pilot Tubing 49..... Inlet Tube..... 51..... Gas Valve Natural..... 52 Gas Valve LP 55 Switch Panel/Mounting Plate..... 56 Off/On Switch 57 Bushing 58 Jumper Wire 59 Control Box Panel 60 Cover - Burner 61..... Hydro-Cannon..... 62..... (1 1/2") galvanized pipe cap..... 63 (1 1/2") galvanized pipe plug 64 (1 1/2") galvanized pipe union

SBD MODELS 120 THRU 500A (continued)

ITEM PARTS DESCRIPTION

1	Flue Baffle
3	Main Burner Orifice Bracket
4	Main Burner
5	Main Burner w/Pilot Bracket
6	Pilot Burner, Natural
	Pilot Burner, LP
	UT ASSEMBLY
11	Gasket
12	Pressure Plate
	Screws, Self Tapping
	Control, Ignition Module
18	Control, Dual w/ECO
	Cover, Cleanout
22a	Drafthood
22b	Damper Drive Assembly
22c	Harness Adapter
LABELS	
41	Manifold
42	Instruction Manual
	Main Burner Orifice, Natural
	Main Burner Orifice, LP
45	Anode Rod
47	Transformer
48	Pilot Tubing
	Inlet Tube
51	Gas Valve Natural
	Gas Valve LP
	Switch Panel/Mounting Plate
	Off/On Switch
	Bushing
	Jumper Wire
	Control Box Panel
	Cover - Burner
61	Cover - Burner Hydro-Cannon
61 62	Cover - Burner Hydro-Cannon (1 1/2") galvanized pipe cap
61 62 63	Cover - Burner Hydro-Cannon

SBD MODELS 120 THRU 500A (continued) SERIES 110-111

ITEM PARTS DESCRIPTION

1	Flue Baffle
	Main Burner Orifice Bracket
	Main Burner
5	Main Burner w/Pilot Bracket
6	Pilot Burner, Natural
7	Pilot Burner, LP
CLEANC	OUT ASSEMBLY
11	Gasket
12	Pressure Plate
13	Screws, Self Tapping
	Control, Ignition Module
	Control, Dual w/ECO
19	Cover, Cleanout
22a	Drafthood
	Damper Drive Assembly
22c	Harness Adapter
LABELS	
	Manifold
	Instruction Manual
	Main Burner Orifice, Natural
	Main Burner Orifice, LP
	Anode Rod
	Transformer
48	Pilot Tubing
	Inlet Tube
	Gas Valve Natural
	Gas Valve LP
	Switch Panel/Mounting Plate
	Off/On Switch
	Bushing
	Jumper Wire
	Control Box Panel
	Cover - Burner
	Hydro-Cannon
	(1 1/2") galvanized pipe cap
	(1 1/2") galvanized pipe plug
64	(1 1/2") galvanized pipe union

COMPONENT PART INFORMATION

	NAME	SPECIFICATIONS
DUAL CONTROLLER	THERMOST AT	120-180 [°] RANGE, <u>+</u> 4 [°] , 5 [°] DIFFERENTIAL, LIQUID FILLED, ANTI- STACKING
	HIGH LIMIT (ECO)	OPENS - 205° FIXED, MANUAL RESET BELOW 185°
GAS VALVE	NATURAL GAS	SBD 120-400;24VAC, 60hz, .6A,.7" to 3.5" W.C., STEP OPEN
		SBD 500; 24VAC, 60hz, Dual Gas Valve, STEP OPEN
	PROPANE GAS	SBD 120-400; 2.5 – 10" W.C. STEP OPEN
		SBD 500; 24VAC, 60hz, Dual Gas Valve, STEP OPEN
INTERMITENT IGNITION DEVICE CONTROL	NATURAL GAS AND PROPANE GAS	24 VAC, 50-60 HZ, .1A; .7 MICROAMP SIGNAL CONTINUOUS RETRIAL
DAMPER	COMPLETE ASSEMBLY	
	MOTOR	24 VAC, 60 HZ, 120 RPM, 5 WATT
	P.C. BOARD	(NOT 110, 111 SERIES) Service Switch
TRANSFORMER	W/RELAY	(NOT 110, 111 SERIES) 120 V PRIMARY, 24 VAC SECONDARY,
		40 VA, 50-60 HZ, CLASS 2 "B"

SBD SERVICE CHECKLIST

(This service checklist may be photo copied to assist with SBD service call.)

This checklist is intended to aid the Service Agent in determining that the State SBD Water Heater has been properly installed and is operating correctly. Because the circumstances of each installation may vary greatly, it is not intended to be an all-inclusive list of the problems that the Service Agent may encounter. Any item checked "no" on this list should be thoroughly investigated and corrective action taken, if required.

MOD	/ICE AGENT EL NUMBER AL NUMBER	INSTALLATION DATE SERVICE DATE LOCATION ADDRESS		
GAS	TYPE - CHECK ONE			
	NATURAL PROPANE	_ PHONE()		
I.	Check Clearances (circle answer) A. Are exterior clearances adequa B. Are interior clearances adequat		yes yes	no no
	Comments:			
II.	Check Makeup Air Requirements A. Is the quantity of make-up air ac	dequate per the National Fuel Gas Code?	yes	no
	Comments:			
	B. Is the quality of make-up air add	equate?	yes	no
	Comments:			
III.	Gas Pressure (fill in blank) A. Supply gas pressure B. Manifold gas pressure (ma	inches of W.C. in burner) inches of W.C.		
	Comments:			
IV.	Venting (check) A. Properly sized per the Nati B. Does the installation have	onal Fuel Gas Code? mechanically assisted venting?	yes yes	no no
	If so, is it operational?		yes	no
	Comments:			

V.	WATER PIPING		
	Is the system properly sized?	yes	no
	Is the system properly installed?	yes	no
	Are there any water leaks?	yes	no
	Does the installation have a recirculating system?	yes	no
	If so, is it operational?	yes	no
VI.	PROPER SEQUENCE OF OPERATION		
	During standby does damper close on standby?	yes	no
	During standby is pilot flame off?	yes	no
	On a call for heat does thermostat close?	yes	no
	On a call for heat does damper open completely?	yes	no
	Does sparking begin at pilot?	yes	no
	Is pilot flame established?	yes	no
	If so, does sparking stop?	yes	no
	Does main burner ignite?	yes	no
	Does the thermostat satisfy?	yes	no
	Does damper close?	yes	no
	Comments:		
VII.	SAFETY		
	A. Gas		
	Does pilot flame prove before main burner ignites?	yes	no
	Does damper blade fully open before ignition sequence occurs?	yes	no
	Is burner cover plate in place?	yes	no
	Is burner floor shield in place?	yes	no
	Does IID lockout occur after 30 sec. trial for ignition? (Propane models only)	yes	no
	B. Water Temperature		
	Is the thermostat adjusted to the lowest acceptable temperature?	yes	no
	Does the installation have a mixing valve?	yes	no
	If so, is it operational?	yes	no
	What is the outlet temperature of the mixing valve?		
	Is a properly rated temperature and pressure relief valve installed?	yes	no
	C. Electrical		
	Is the 120 VAC electrical power supply properly wired?	yes	no
	Are all the SBD control covers in place?	yes	no
	Is the 120 VAC electrical power supply properly fused?	yes	no
	D. Flammables		
	Are flammable materials located in the area of the water heater?	yes	no
	Are flammable vapors located in the area of the water heater?	yes	no

(This service checklist may be photo copied to assist with SBD service call.)

COMMENTS

Author: Terry Mulder

Prepared by the State Water Heaters Training Department. For additional technical information call 800-365-0577.

State Water Heaters

500 Tennessee Waltz Parkway Ashland City, TN 37015 800-365-8170 www.statewaterheaters.com

©Copyright 2007 State Industries, Inc.